Aromaticity and Tautomerism. Part II. ${ }^{1}$ The 4-Pyridone, 2-Quinolone, and 1-Isoquinolone Series

By Michael J. Cook, ${ }^{*}$ Alan R. Katritzky,* Paolo Linda, and Robert D. Tack, School of Chemical Sciences, University of East Anglia, Norwich NOR 88C

Aromatic resonance energies for 4-pyridone and its analogues are similar to those for the 2-pyridone series. For the bicyclic compounds, the differences in aromaticity between the quinolinoid and the quinolonoid forms are significantly less than for the monocyclic derivatives. A new acidity function $H_{-(q)}$ is derived for the deprotonation of methyl quaternary salts to neutral heterocyclic methide and imine bases. Quantitative tautomeric ratios are reported for the thioamide-thioimidate equilibrium in an Appendix.

Part I ${ }^{1}$ presented quantitative data on the aromatic stabilisation of 2 -pyridone and related compounds, derived from tautomeric equilibria. We now extend this approach to the 4 -pyridone, 2 -quinolone, and 1 -isoquinolone series by comparing the tautomeric equilibria $(1) \rightleftharpoons(2),(5) \rightleftharpoons(6)$, and $(9) \rightleftharpoons(10)$ with $(3) \rightleftharpoons$ (4), (7) $\rightleftharpoons(8)$, and (11) $\rightleftharpoons(12)$, respectively.

From the comparison of the ring currents in 1 -methyl-2-pyridone and in 1-methyl-4-pyridone ${ }^{2}$ Jackman and
${ }^{1}$ Part I, M. J. Cook, A. R. Katritzky, P. Linda, and R. D. Tack, J.C.S. Perkin II, 1972, 1295.
${ }^{2}$ G. G. Hall, A. Hardisson, and L. M. Jackman, Tetrahedron, 1963, 19, (suppl. 2), 101.
his co-workers concluded that the latter compound is less aromatic than the former and Batts and Spinner have recently concluded from n.m.r. data that neither 4 -pyridone nor 4 -pyridone imine have appreciable aromaticity. ${ }^{3}$ MO calculations by Dewar ${ }^{4}$ suggest to us that both pyridones have considerable aromatic character although 4 -pyridone may be somewhat less delocalized than 2 -pyridone.
Little quantitative data are available on the 'aroma-
${ }^{3}$ B. D. Batts and E. Spinner, Austral. J. Chem., 1969, 22, 2595.

4 N. Bodor, M. J. S. Dewar, and A. J. Harget, J. Amer. Chem. Soc., 1970, 92, 2929.
ticity' of 2-quinolone, 1 -isoquinolone, and related compounds. The different long-range coupling of the methyl

(1)

(4)

(2)

(5)

(3)

(6)

(9)

(12)
(10)

(8)

(11)
on 1-alkyl-2-quinolone and 1-alkyl-2-quinolone methide ${ }^{6}$ and on 2 -quinolone. ${ }^{7}$ Dewar's calculation on the tautomeric 2-quinolone and 1-isoquinolone ${ }^{4}$ suggested that the difference between the resonance energies of these compounds and quinoline or isoquinoline is less than for the monocyclic analogues. ${ }^{8}$

Tautomeric equilibrium constants follow from $\mathrm{p} K_{\mathrm{a}}$ data of fixed models (normally the $N-\mathrm{Me}$ and $X-\mathrm{Me}$ analogues of the tautomers) and the present work has necessitated measurement of the $\mathrm{p} K_{\mathrm{a}}$ values of many bases. We found that the deprotonation of quaternary salts (methiodides) of methyl- and amino-pyridines and methyl-quinolines and -isoquinolines to give neutral methides and imines did not follow the existing H_{-}scales and we therefore set up a new scale. Other $\mathrm{p} K_{\mathrm{a}}$ values had to be obtained by special methods due to rapid hydrolysis (see Experimental section).

RESULTS AND DISCUSSION

4-Pyridone and Related Compounds (Table 1).-The $\mathrm{p} K_{\mathrm{a}}$ values quoted for N - and X-methyl derivatives of the tautomeric pyridines are taken from the literature except for 1-methyl-4-pyridone imine and 1-methyl-4pyridone methide which were redetermined. The previous value for 1 -methyl-4-pyridone imine was subject to some uncertainty ${ }^{3}$ ($\mathrm{p} K_{\mathrm{a}}=15-16$). The only value for 1-methyl-4-pyridone methide previously reported ${ }^{9}$ was >16.7 : we measured the $\mathrm{p} K_{\mathfrak{a}}$ as 19.46 ± 0.04 using a procedure derived from that of Bowden and Cockerill ${ }^{\mathbf{1 0}}$ (see Experimental section).

The $\mathrm{p} K_{\mathrm{a}}$ values for N - and X-Me derivatives of compounds (3) and (4) were not available. As models, we utilised the literature $\mathrm{p} K_{\mathrm{a}}$ for 3-ethylaminocyclohex2 -enone ${ }^{14}$ for (3a) and N -(3-methoxycyclohex-2-en yl-

Table 1
Results for 4-pyridone and related compounds a

	(1)	(2)	$\Delta G^{\circ}{ }_{\mathrm{u}} /$	(3)	(4)	$\Delta G^{\circ}{ }^{\text {d }}$	$\left(A_{\mathrm{py}}-A_{\mathrm{x}}\right) / \mathrm{kcal} \mathrm{mol}^{-1 \boldsymbol{b}}$			
X	$\mathrm{p} K_{\mathrm{a}}$	$\mathrm{p} K_{\mathrm{a}}$	$\mathrm{kcal} \mathrm{mol}^{-1}$	$\mathrm{p} K_{\mathrm{a}}$	$\mathrm{p} K_{\mathrm{a}}$	$\mathrm{kcal} \mathrm{mol}^{-1}$	(i)	(ii)	(iii)	(iv)
O	$3.33{ }^{\text {® }}$	6.62 。	-4.5	3.10 ${ }^{\text {h }}$	$11 \cdot 19{ }^{k}$	-11.1	$6 \cdot 6$	$7 \cdot 0$	$8 \cdot 6$	8.7
NH	$17.87{ }^{\text {d }}$	$9 \cdot 12^{\text {f }}$	$12 \cdot 0$	i	i	0	12.0		$15 \cdot 6$	$15 \cdot 8$
CH_{2}	$19.46{ }^{\circ}$	6.02 。	$18 \cdot 4$	$9 \cdot 5^{3}$	$8 \cdot 71$	I-1	$17 \cdot 3$	$15 \cdot 3$	22.5	$22 \cdot 9$

a All values refer to aqueous solutions. ${ }^{b}$ The figures are respectively (i) uncorrected ΔG° values, (ii) ΔH° values from correlation of $\mathrm{p} K_{\mathrm{a}}$ variation with temperature, (iii) ΔH° from Arnett's correlation, and (iv) ΔH° from temperature dependence of tautomeric equilibria. For full details see ref. I. © $C f$. ref. Il. a Present investigation. © Present investigation. f Value for 4-amino-
 value, see text. k Value for N-(3-methoxycyclohex-2-enylidene)ethylamine, ref. $14 . \quad l$ Value for N-n-butylcrotonaldimine, ref. 15.
has been attributed ${ }^{5}$ to a lower aromaticity of the former compound. Some calculations have been performed

[^0]idene) ethylamine ${ }^{14}$ for (4a). For the series $\mathrm{X}=\mathrm{CH}_{2}$, we used the literature $\mathrm{p} K_{\mathrm{a}}$ of N-n-butylcrotonaldimine ${ }^{15}$ for (4d) and estimated the $\mathrm{p} K_{\mathrm{a}}$ of (3d) as 9.5 from the $\mathrm{p} K_{\mathrm{a}}$ of 1,4,4-trimethyl-1,2,3,4-tetrahydropyridine ${ }^{15}$ of

10 K. Bowden and A. F. Cockerill, J. Chem. Soc. (B), 1970, 173.
11 A. Albert and J. N. Phillips, J. Chem. Soc., 1956, 1294.
12 A. Fischer, W. J. Galloway, and J. Vaughan, J. Chem. Soc., 1964, 3591.
${ }^{13}$ H. C. Brown and X. R. Mihm, J. Amer. Chem. Soc., 1955, rar, 1723.
${ }_{14}$ J. V. Greenhill, J. Chem. Soc. (B), 1969, 299.
15 E. M. Kosower and T. S. Sorensen, J. Org. Chem., 1962, 27, 3764.
10.45, making an allowance for the extra $\mathrm{C}=\mathrm{C}$ by a reduction of one $\mathrm{p} K_{\mathrm{a}}$ unit ($c f$. the $\mathrm{p} K_{\mathrm{a}}$ values of 2-vinylpyridine and 2-ethylpyridine, $4.92{ }^{16}$ and $5 \cdot 97,{ }^{13}$ respectively). To a first approximation the $\mathrm{p} K_{\mathrm{a}}$ values of the two compounds, (3c) and (4c), of the nitrogen 'non aromatic' series will be equal, as they are both imino-enamines.*

From the $\Delta G-\Delta H$ correlations discussed in ref. $1 \dagger$ we calculate the following $\left(A_{\mathrm{py}}-A_{\mathrm{X}}\right) \ddagger$ values: 4-pyridone, $7.7 \pm 1.5 \mathrm{kcal} \mathrm{mol}^{-1}$; 4-pyridone imine, $14.5 \pm 3 \mathrm{kcal}$ mol^{-1}, and 4 -pyridone methide $19.5 \pm 3.5 \mathrm{kcal}^{-1} \mathrm{~mol}^{-1}$. Comparison with the data for the 2 -pyridone analogues (see Table 2) shows that the aromaticities for the two

Table 2
Aromatic resonance energy differences for the 2 - and 4 -pyridone, 2 -quinolone, and 1 -isoquinolone series

	$\left(A_{\mathrm{py}}-A_{\mathbf{x}}\right) / \mathrm{kcal} \mathrm{mol}^{\mathbf{- 1}}$		$\left(A_{\mathbf{q}}-A_{\mathbf{x}}\right) /$	$\left(A_{\text {isoq }}-A_{\text {x }}\right)$
X	2-Series	4-Series	kcal mol ${ }^{-1}$	kcal mol^{-1}
O	$7 \cdot 5 \pm 1$	$7 \cdot 7 \pm 1 \cdot 5$	2.0 ± 0.5	$4 \cdot 4 \pm 1 \cdot 0$
S	6 ± 1		2.9 ± 0.5	$4 \cdot 0 \pm 1 \cdot 0$
NH	10 ± 2	$14 \cdot 5 \pm 3$	$5 \cdot 0 \pm 1 \cdot 0$	$6 \cdot 2 \pm 1 \cdot 2$
CH_{2}	$17 \cdot 5 \pm 3.5{ }^{\text {a }}$	$19 \cdot 5 \pm 4$	$7 \cdot 9 \pm 1.5$	$7 \cdot 4 \pm 1 \cdot 5$

a Redetermination of the $\mathrm{p} K_{\mathrm{a}}$ of 2 -pyridone methide (see Experimental section) modifies the mean value (18.6 kcal mol^{-1}) of the results reported in ref. 1.
series are very similar. While charge-separated structures have higher symmetry in the 4 -series, the distance of charge separation is greater, and these two effects may approximately cancel.
quinolone methide $(15 \cdot 23 \pm 0 \cdot 04)(5 \mathrm{~d})$. The $\mathrm{p} K_{\mathrm{a}}$ values for many of the N - and X-alkylated models for compounds (7) and (8) are not available. Models have been therefore taken from the literature $\mathrm{p} K_{\mathrm{a}}$ data for ethyl N-phenylthiobutyrimidate, ${ }^{24}$ 1,3,3-trimethyl-2iminoindoline, ${ }^{22}$ and 2 -aminoindolenine. ${ }^{22,25}$ The $\mathrm{p} K_{\mathrm{a}}$ values of N -phenylthioacetamide (13) and cyclohexanone anil (15) were determined (see Experimental section) as models for (7b) and (8d) respectively. For (7d), the $\mathrm{p} K_{\mathrm{a}}$ of 1-methyl-1,4-dihydroquinoline ($7.91 \pm 0.09 \mathrm{ex}-$ perimental) (14) was considered as a first approximation. A terminal, exo-methylene group is less stable than an endo $\mathrm{C}=\mathrm{C}$; the n.m.r. spectrum of 1,2 -dimethyl-1,4dihydroquinoline confirms the predominance of the $1,4-$ dihydro-form. The model is therefore less basic than (7d), the $\mathrm{p} K_{\mathrm{a}}$ of which was taken as $10 \cdot 0$.

(13)

(14)

(15)

The following $\left(A_{\mathrm{q}}-A_{\mathrm{x}}\right)$ values were calculated as in ref. 1: 2-quinolone, $2.0 \pm 0.5 \mathrm{kcal} \mathrm{mol}^{-1}$; quinoline-2thione, $2.9 \pm 0.5 \mathrm{kcal} \mathrm{mol}^{-1}$; 2-quinolone imine, $5 \cdot 0 \pm 1$ kcal mol^{-1}; and 2 -quinolone methide, $7.9 \pm 1.5 \mathrm{kcal}$ mol^{-1}. Comparison with the data for 2-pyridone and its analogues (see Table 2) shows a decrease in ($A-A_{\mathrm{x}}$) values for the 2 -quinolone series. This phenomenon

Table 3
Results for 2-quinolone and related compounds ${ }^{a}$

	(5)	(6)	$\Delta G^{\circ}{ }_{\mathrm{u}}$	(7)	(8)	$\Delta G^{\circ}{ }_{8}$	$\left(A_{\mathrm{q}}-A_{\mathrm{x}}\right) / \mathrm{kcal} \mathrm{mol}^{-1 \boldsymbol{b}}$			
X	$\mathrm{p} K_{\text {a }}$	$\mathrm{p} K_{\text {a }}$	kcal mol ${ }^{-1}$	$\mathrm{p} K_{\mathrm{a}}$	$\mathrm{p} K_{\text {a }}$	kcal moll	(i)	(ii)	(iii)	(iv)
O	$-0.71{ }^{\text {c }}$	$3 \cdot 17{ }^{\text {c }}$	$-5 \cdot 3$	$-0.50{ }^{\text {i }}$	$4.63{ }^{\text {m }}$	-7.0	$1 \cdot 7$	$1 \cdot 9$	$2 \cdot 2$	$2 \cdot 2$
S	$-1.6{ }^{\text {a }}$	$3 \cdot 71{ }^{\text {d }}$	$-7 \cdot 3$	$-3.34{ }^{\text {j }}$	$3 \cdot 84{ }^{n}$	-9.85	$2 \cdot 6$	$2 \cdot 4$	$3 \cdot 3$	$3 \cdot 4$
NH	$11.68{ }^{\text {c }}$	$7 \cdot 34 \mathrm{~g}$	$5 \cdot 9$	$9 \cdot 25{ }^{\text {k }}$	$8 \cdot 15{ }^{\circ}$	1.5	$4 \cdot 4$	$4 \cdot 0$	$5 \cdot 7$	$5 \cdot 8$
CH_{2}	$15 \cdot 23{ }^{\text {f }}$	$5 \cdot 83{ }^{\text {h }}$	12.9	$10.0{ }^{2}$	$5 \cdot 8{ }^{p}$	$5 \cdot 8$	7.1	5.9	$9 \cdot 3$	$9 \cdot 4$

${ }^{a}$ All values refer to aqueous solutions. ${ }^{b}$ (i), (ii), (iii), (iv) cf. Table 1. e $C f$. ref. 17. a Cf. ref. 18. e Present investigation. ${ }^{f}$ Present investigation. g Value for 2 -aminoquinoline, $c f$. ref. 19. ${ }^{h} C f$. value for 2 -methylquinoline, ref. 20 . ${ }^{\text {i }}$ Value for N methylacetanilide, $c f$. ref. 21. ${ }^{j}$ Value for N-phenylthioacetamide, present investigation. k Value for $1,3,3$-trimethyl- 2 -iminoindoline, $c f$. ref. 22. ${ }^{l}$ Estimate, see text. ${ }^{m}$ Value for ethyl N-phenylacetimidate, $c f$. ref. 23 . n Value for ethyl N-phenylthiobutyrimidate, $c f$. ref. 24. o Value for 2 -aminoindolenine, $c f$. refs. 22 and 25. \quad Value for cyclohexanone anil, present investigation.

2-Quinolones and Related Compounds (Table 3).-The $\mathrm{p} K_{\mathrm{a}}$ values of the models for the tautomeric quinolines are taken from the literature except for 1-methyl-2quinolone imine (11.68 ± 0.03) (5c) and 1-methyl-2-

[^1]is probably due to bond fixation in the quinoline ring compared with the completely delocalised pyridine ring: hence, less resonance energy is lost in passing from a quinolinoid to a quinolonoid ring than in the monocyclic series.
${ }_{19}$ A. Albert, R. Goldacre, and J. Phillips, J. Chem. Soc., 1948, 2240.
${ }_{20}$ R. Riccardi and M. Bresesti, Ann. Chim. (Italy), 1958, 48, 826.
${ }^{21}$ C. A. Streuli, Analyt. Chem., 1959, 31, 1652.
${ }_{23} \mathrm{~J}$. Kebrle and K. Hoffmann, Helv. Chim. Acta, 1956, 39, 116.
${ }^{23}$ R. K. Chaturvedi and G. L. Schmir, J. Amer. Chem. Soc., 1968, 90, 4413.
${ }^{24}$ R. K. Chaturvedi, A. E. MacMahon, and G. L. Schmir, J. Amer. Chem. Soc., 1967, 89, 6984.

252 -Iminoindolines have been shown to exist as 2 -aminoindolenines in CDCl_{3}; T. Hino, M. Nakagawa, T. Hashizume, N. Yamaji, Y. Miwa, K. Tsuneoka, and S. Akaboshi, Tetrahedron, 1971, 27, 775.

1-Isoquinolone and Related Compounds (Table 4).-The $\mathrm{p} K_{\mathrm{a}}$ values for isoquinolines and model compounds are from the literature or new measurements (see Experimental section). The $\mathrm{p} K_{\mathrm{a}}$ values of the models for the amino-saturated compounds have been taken as equal as each is an alkylated benzamidine.

From these data the following $A_{\text {isoq }}-A_{\text {x }}$ values can be calculated: 1 -isoquinolone, $\mathbf{4 \cdot 4} \pm 1 \mathrm{kcal} \mathrm{mol}^{-1}$; iso-quinoline-1-thione, $4.0 \pm 1 \mathrm{kcal} \mathrm{mol}^{-1}$; 1 -isoquinolone
the differences between the aromaticity of the quinolinoid and quinolonoid forms are considerably less than for the corresponding monocyclic analogues.

EXPERIMENTAL

M.p.s are uncorrected. $\mathrm{p} K_{\mathrm{a}}$ Data were obtained using a Unicam SP 500 series 2 spectrophotometer.

Compounds.-1-Methyl-4-picolinium iodide, m.p. 154$155^{\circ}$ (lit., ${ }^{32} 157-158^{\circ}$), 4-amino-1-methylpyridinium iodide,

Table 4
Results for 1 -isoquinolone and related compounds ${ }^{a}$

X	$\begin{gathered} \stackrel{(9)}{\mathrm{p}}{ }_{\mathrm{a}} \end{gathered}$	$\begin{aligned} & (1) \\ & \mathrm{p})_{\mathrm{a}} \end{aligned}$	$\underset{\text { kcal mol }{ }^{-1}}{\Delta G^{\circ} /}$	${ }_{\mathrm{p} K_{\mathrm{a}}}^{(\mathrm{II})}$	$\begin{gathered} (12) \\ \mathrm{p} K_{\mathrm{a}} \end{gathered}$	$\underset{\text { kcal mol }}{\Delta G_{\mathrm{s} /}^{\circ}}$	$\left(A_{\text {isoq }}-A_{\mathrm{x}}\right) / \mathrm{kcal} \mathrm{mol}^{-1 \mathbf{b}}$			
							(i)	(ii)	(iii)	(iv)
O	$-1.80{ }^{\text {c }}$	$3.05{ }^{\text {c }}$	-6.6	$-1.62{ }^{\text {a }}$	$5 \cdot 8^{\text {b }}$	-10.2	$3 \cdot 6$	$4 \cdot 3$	4.7	$4 \cdot 8$
S	$-2 \cdot 13{ }^{\text {d }}$	$3.93{ }^{\text {d }}$	-8.3	$-2.61{ }^{\text {i }}$	$6.04{ }^{m}$	-11.85	$3 \cdot 6$	3.7	$4 \cdot 6$	4.7
NH	$11.38^{\text {e }}$	$7 \cdot 62$ g	5-15	j	j	0	$5 \cdot 15$		6.7	6.8
CH_{2}	$15 \cdot 89{ }^{\prime}$	$6.42{ }^{\text {f }}$	13.0	$13.06{ }^{k}$	$8 \cdot 30^{n}$	6.5	6.5	6.0	8.4	8.5

${ }^{a}$ All values refer to aqueous solutions. ${ }^{b}$ (i), (ii), (iii), (iv) $c f$. Table 1. ${ }^{\circ} C f$. ref. 17. a $C f$. ref. 18. © Present investigation. ${ }^{f}$ Present investigation. V Value for 1 -aminoisoquinoline, $c f$. ref. 19. ${ }^{h}$ Value for $N N$-dimethylbenzamide, $c f$. ref. 26. ' Value for N-methylthiobenzamide, present investigation. ${ }^{j}$ Assumed equal by inspection. k Value for 2 -methyl-3,4-dihydro-1-isoquinolone methide, present investigation. ${ }^{l}$ Value for methyl benzimidate, cf. ref. 27. m Value for ethylthiobenzimidate, $c f$. ref. 24. n Value for 1-methyl-3,4-dihydroisoquinoline, present investigation.
imine, $6 \cdot 2 \pm 1.2 \mathrm{kcal} \mathrm{mol}^{-1}$; and 1 -isoquinolone methide, $7.4 \pm 1.5 \mathrm{kcal} \mathrm{mol}^{-1}$. These results can be explained as described above for the quinolone series.

General Conclusions.-On the basis of cumulative $\mathrm{p} K_{\mathrm{a}}$ errors (maximum $\pm 0.5 \mathrm{kcal} \mathrm{mol}^{-1}$) and the spread of the ΔH° values obtained by the various methods, the $\left(A-A_{\mathrm{X}}\right)$ values given are expected to be within $c a$. $\pm 20 \%$. The errors have been discussed in Part I. ${ }^{1}$ Although gas-phase tautomerism of acetylacetone ${ }^{28}$ and oxazolidines ${ }^{29}$ varies little from that for the solution phase, Beak drew attention ${ }^{30}$ to dangers in using aqueous solution data that could be considerably different from non-polar phase situations. However, Beak has recently concluded ${ }^{31}$ that solvation effects, which are potential sources of error, could well cancel in the comparison of the equilibrium constants of the heteroaromatic and nonaromatic cases.

We therefore conclude that the aromatic resonance energies for 4 -pyridone, 4 -pyridone imine, and 4 -pyridone methide are similar to those for the corresponding compounds of the 2 -pyridone series. However, for all the compounds of the 2 -quinolone and 1 -isoquinolone series,
${ }^{26}$ J. T. Edward, H. S. Chang, K. Yates, and R. Stewart, Canad. J. Chem., 1960, 38, 1518.
${ }^{27}$ J. T. Edward and S. C. R. Meacock, J. Chem. Soc. 1957, 2009.
${ }^{28}$ (a) J. Powling and H. J. Bernstein, J. Amer. Chem. Soc., 1951, ry3, 4353; (b) J. Calmon, Y. Cazaux-Maraval, and P. Maroni, Bull. Soc. chim. France, 1968, 3779.
${ }^{29}$ M. E. Rennekamp, J. V. Paukstelis, and R. G. Cooks, Tetrahedron, 1971, 2', 4407.
${ }^{30}$ P. Beak, J. Bonham, and J. T. Lee, jun., J. Amer. Chem. Soc., 1968, 90, 1569.
${ }^{31}$ P. Beak and T. S. Woods, Tetrahedron Letters, 1972, 775.
${ }^{32}$ E. D. Bergmann, F. E. Crane, jun., and F. M. Fuoss, J. Amer. Chem. Soc., 1952, 74, 5979.
${ }^{33}$ A. E. Tschitschibabin and E. D. Ossetrowa, Ber., 1925, 58, 1708.
${ }^{34}$ ' Dictionary of Organic Compounds,' Eyre and Spottiswoode, London, 1965, vol. 4, p. 2321.
m.p. 188-190 (lit., ${ }^{33}$ 187-189 ${ }^{\circ}$), 2-methylquinoline methiodide, m.p. $190-191^{\circ}$ (lit., ${ }^{34} 195^{\circ}$) (Found: C, $46 \cdot 3$; $\mathrm{H}, 4.3 ; \mathrm{N}, 4.8$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{IN}: \mathrm{C}, 46.3 ; \mathrm{H}, 4 \cdot 2 ; \mathrm{N}$, 4.9%), 2-aminoquinoline methiodide, m.p. 258- 261° (lit., ${ }^{35}$ 247°) (Found: C, $41.7 ; \mathrm{H}, 3.9 ; \mathrm{N}, 9.8$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IN}_{2}$: C, $42.0 ; \mathrm{H}, 3.9 ; \mathrm{N}, 9.8 \%$), 1-methyl-3,4-dihydroisoquinoline methiodide, m.p. $199-202^{\circ}$ (lit., ${ }^{36} 200-202^{\circ} ;^{37} 191-$ 193°), 1-methylisoquinoline methiodide, m.p. $207-210^{\circ}$ (lit., ${ }^{38} 208^{\circ}$), 1-aminoisoquinoline methiodide, m.p. 203- 206° as needles from MeCN (Found: C, $42.3 ; \mathrm{H}, 4 \cdot 0 ; \mathrm{N}, 9.8$. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IN}_{2}$ requires $\mathrm{C}, 42 \cdot 0 ; \mathrm{H}, 3.9 ; \mathrm{N}, 9 \cdot 8 \%$) were prepared by the reaction of methyl iodide on the corresponding bases.

2-Aminoquinoline, m.p. 131.5—132.5 ${ }^{\circ}$ (lit., ${ }^{39} 130 \cdot 5-131^{\circ}$), was prepared by the reaction of sodamide with quinoline in refluxing xylene; ${ }^{40}$ 1-methyl-3,4-dihydroisoquinoline was prepared by reaction of $\mathrm{POCl}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}$ on N -phenethylacetamide in refluxing xylene ${ }^{41}$ [hydrochloride, m.p. 195$198^{\circ}$ (lit., ${ }^{41}$ 196-198 ${ }^{\circ}$)]; 1-methylisoquinoline was prepared from 1-methyl-3,4-dihydroisoquinoline by dehydrogenation over Raney nickel ${ }^{38}$ [sulphate, m.p. 246- 249° (lit., ${ }^{42} 245^{\circ}$)].

1-Methyl-1,4-dihydroquinoline.-Sodium amalgam (27 g; 1.4%) was shaken with quinoline methiodide (1 g) in water $(50 \mathrm{ml})$ and ether $(50 \mathrm{ml})$. The ether layer was separated after 15 min and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation gave 1-methyl-1,4-dihydroquinoline as a liquid which quickly

[^2]coloured and became viscous, $\lambda_{\max }(\mathrm{EtOH}) 303 \mathrm{~nm}$ (lit., ${ }^{43}$ $303 \mathrm{~nm})$; $\tau\left(\mathrm{CHCl}_{3}\right) 4 \cdot 15\left(1 \mathrm{H}, \mathrm{dt}, J_{2,3} 8, J_{2,4} 1 \cdot 5 \mathrm{~Hz}\right), 5 \cdot 4-$ $5.7\left(1 \mathrm{H}, \mathrm{q}, J_{3.4} 4, J_{2,3} 8 \mathrm{~Hz}\right), 6.35-6.55 \mathrm{br}\left(2 \mathrm{H}, \mathrm{d}, J_{3,4} 4 \mathrm{~Hz}\right)$, $7.05(3 \mathrm{H}, \mathrm{s})\left[\mathrm{lit} .{ }^{43} \tau 4 \cdot 11\left(1 \mathrm{H}, \mathrm{dt}, J_{2,3} 8, J_{2,4} 1 \cdot 6 \mathrm{~Hz}\right), 5 \cdot 39-\right.$ $5.64(1 \mathrm{H}, \mathrm{m}), 6.43\left(2 \mathrm{H}, \mathrm{d}, J_{3.4} 4 \mathrm{~Hz}\right)$, and $\left.7.0(3 \mathrm{H}, \mathrm{s})\right]$.

1,2-Dimethyl-1,4-dihydroquinoline.-Quinaldine methiodide was treated with sodium amalgam as above. The product decomposed rapidly in chloroform and carbon tetrachloride. The n.m.r. spectrum obtained in pyridine was similar to that of 1 -methyl-1,4-dihydroquinoline, $\tau 555$ $(1 \cdot 0 \mathrm{H}, \mathrm{t}, 3-\mathrm{H}), 6 \cdot 55 \mathrm{br}(2 \cdot 1 \mathrm{H}, \mathrm{s}, 24-\mathrm{H}), 6 \cdot 1(0.55 \mathrm{H}, \mathrm{d}$, impurity), $6 \cdot 8-7 \cdot 6$ (m of impurity), $7 \cdot 1\left(c a .3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, and $8 \cdot 25 \mathrm{br}$ ($c a .3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}$) ; no signals in the region for terminal methylene protons ($\tau 4 \cdot 3-5 \cdot 4$).

Cyclohexanone Anil.-Cyclohexane (48 g), aniline (46 g), toluene- p-sulphonic acid (1 g), and benzene (50 ml) were azeotropically distilled in a Dean and Stark apparatus until the theoretical amount of water (9 ml) had been collected. On fractional distillation, dimer distilled over and trimer remained as residue. The fraction containing

N-Phenylthioacetamide.-Aniline (3.7 g) in dry benzene $(40 \mathrm{ml})$ was slowly added, with stirring, to ethylmagnesium bromide [from ethyl bromide ($4 \cdot 4 \mathrm{~g}$) and magnesium $(1.0 \mathrm{~g})]$ in THF $(20 \mathrm{ml})$ and the whole then heated under reflux for 5 min . Ethyl thionacetate (2.0 g) in dry THF $(10 \mathrm{ml})$ was added and the mixture was heated under reflux for 1 h . The solvents were removed by evaporation (100° and 15 mmHg) and the residue was treated with ice $(30 \mathrm{~g})$, hydrochloric acid ($36 \% ; 16 \mathrm{ml}$), and brine (20 ml). The mixture was extracted with ether and, after removing the ether, the product was recrystallised from toluene-light petroleum (b.p. $60-80^{\circ}$) to yield N-phenylthioacetamide (1.2 g), m.p. $73-75^{\circ}$ (lit. ${ }^{46} 75^{\circ}$).
N-Methylthiobenzamide.-Benzonitrile (52 g) similarly gave ethyl benzimidate (31 g crude) and ethyl thionobenzoate (29 g), b.p. $114-116^{\circ}$ at 10 mmHg (lit., ${ }^{46} 130^{\circ}$ at $22 \mathrm{mmHg})$. Ethyl thionobenzoate (3.3 g) and methylamine (1.0 g) gave N-methylthiobenzamide (16) $(0.5 \mathrm{~g})$, $\mathrm{m} . \mathrm{p} .75-79^{\circ}$ (3 recrystallisations from toluene) (lit., ${ }^{46} 79^{\circ}$) (Found: C, 63.3; H, 6.0; N, 9.2; S, 21.2. Calc. for

Table 5
$\mathrm{p} K_{\mathrm{a}}$ Values for proton addition at $20 \pm 2^{\circ}$

			λ of $\mathrm{p} K_{\mathrm{a}}$ Compound		
measurement/nm				\quad	Method of
:---:					
measurement					

$\mathrm{A}=$ In $\mathrm{Me}_{2} \mathrm{SO}$-water, following the new $H_{-(q)}$ function (see Experimental section). $\mathrm{B}=$ In aqueous solution. $\mathrm{C}=$ In aqueous solution by a stop-flow method. ${ }^{48} \mathrm{D}=\mathrm{By}$ potentiometric titration in methyl cyanide. ${ }^{\mathbf{1 5}, 49} \mathrm{E}=\mathrm{In}$ sulphuric acid-water solutions.
aniline and the imine ($\nu_{\text {max. }} 1675 \mathrm{~cm}^{-1}$) was redistilled to yield cyclohexanone anil, b.p. 95° at 1 mmHg (lit., ${ }^{44}$ b.p. 132° at $4 \mathrm{mmHg})$; $\lambda_{\text {max }}(\mathrm{EtOH}) 227$ and $284 \mathrm{~nm}\left(\log _{10} \varepsilon 3.98\right.$ and $3 \cdot 30$) [lit., ${ }^{45}$ (cyclohexane) 230 and $286 \mathrm{~nm}\left(\log _{10} \varepsilon 3.93\right.$ and $3 \cdot 33)] ; \tau\left(\mathrm{CCl}_{4}\right) 2 \cdot 6-3 \cdot 5(5 \mathrm{H}, \mathrm{m})$ and $7 \cdot 4-8 \cdot 9(10 \mathrm{H}, \mathrm{m})$.

Ethyl Thionacetate. ${ }^{46}$ - Ethanol (15 g), methyl cyanide $(13 \mathrm{~g})$, and hydrogen chloride (11 g) were kept 5 days at 0° to give ethyl acetimidate hydrochloride (28 g) which was filtered off and washed with dry ether. 6 m -Potassium carbonate (45 ml) was added whilst stirring vigorously under ether at 0° until neutral. After removing the ether by evaporation, the imidate ester (10 g) in dry pyridine $(20 \mathrm{ml})$ was cooled (ice-salt bath) and hydrogen sulphide was passed through it for 1.3 h . The yellow mixture was kept at 0° for 2 h and then poured onto ice with stirring and brought to pH 5 with hydrochloric acid (10%). The whole was extracted with ether ($3 \times 50 \mathrm{ml}$). The combined extracts were washed with hydrochloric acid (4\%; 2×25 $\mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and distilled to yield ethyl thionacetate $(2 \cdot 2 \mathrm{~g})$, b.p. $109^{\circ}(\mathrm{lit} .)^{46}$ b.p. $\left.109^{\circ}\right)$.
${ }^{43}$ J. W. Bunting and W. G. Meathrel, Tetrahedron Letters, 1971, 133.
${ }^{44}$ E. W. Drew and P. D. Ritchie, Chem. and Ind., 1952, 1104.
${ }^{45}$ W. C. Bain, P. D. Ritchie, and A. E. Wright, J. Chem. Soc., 1964, 1454.
${ }^{46}$ P. Reynaud, B.P. $1,080,879 / 1967$ (Chem. Abs., 1968, 68, 95,566e).
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NS}: \quad \mathrm{C}, 63 \cdot 5 ; \mathrm{H}, 6 \cdot 0 ; \mathrm{N}, 9 \cdot 3 ; \mathrm{S}, 21 \cdot 2 \%$); $\lambda_{\text {max. }}$ (EtOH) 239 and $284.5 \mathrm{~nm}\left(\log _{10} \varepsilon 4 \cdot 03\right.$ and $\left.3 \cdot 88\right)$ [lit., ${ }^{47} 238$ and $286.5 \mathrm{~nm}\left(\log _{10} \varepsilon 4.03\right.$ and 3.86$\left.)\right]$.

(16)

(17)

(18)
$\mathrm{p} K_{\mathrm{a}}$ Measurements (Table 5).-The spectroscopic method (u.v. absorbance) of determining $\mathrm{p} K_{\mathrm{a}}$ values was used (cf. ref. 50). The $\mathrm{p} K_{\mathrm{a}}$ of compounds (17) and (18) were measured in phosphate-alkali and boric acid-alkali buffers. The $\mathrm{p} K_{\mathrm{a}}$ values of the N-Me derivatives of (5c) and (11d) were determined in sodium hydroxide solutions of known concentration and the activity of the hydrogen ions was determined from a plot of $-\log _{10} a_{\text {H+ }} v s$. $\mathrm{p}\left[\mathrm{OH}^{-}\right] .{ }^{50}$ The $\mathrm{p} K_{\mathrm{a}}$ of the N-Me derivative of (9c) was determined in boric acid-alkali buffers and sodium hydroxide solutions.
${ }^{47}$ J. Sandström, Acta Chem. Scand., 1962, 16, 1616.
${ }^{48}$ C. V. McDonnell, jun., M. S. Michailidis, and R. B. Martin, J. Phys. Chem., 1970, 74, 26.
${ }_{50}{ }^{49}$ H. K. Hall, jun., J. Phys. Chem., 1956, 60, 63.
${ }^{50}$ A. Albert and E. P. Serjeant, ' Ionisation Constants of Acids and Bases,' Methuen, London, 1971, p. 49.
$\mathrm{p} K_{\mathrm{a}}$ Measurements of Strongly Basic Compounds and a New Acidity Function.-The $\mathrm{p} K_{\mathrm{a}}$ values of strongly basic compounds ($\mathrm{p} K_{\mathrm{a}}>13$) were determined by a method similar to that already described by Bowden and Cockerill ${ }^{10}$ using 0.047 m -tetramethylammonium hydroxide in $\mathrm{Me}_{2} \mathrm{SO}-$ water solutions. These workers set up a carbon acid H_{-}scale but the gradients of the plots of $\log _{10} I$ vs. H_{-} (where $I=[\mathrm{B}] /\left[\mathrm{BH}^{+}\right]$) for the bases studied here diverged considerably from $-\mathbf{1} \cdot \mathbf{0}$. The gradients of plots of $\log _{10} I$ vs. mole $\% \mathrm{Me}_{2} \mathrm{SO}(c a .-0 \cdot 165)$ in the present work differ substantially from those obtained by other workers for both carbon acids ($c a .-0.133$) and nitrogen acids (ca. -0.09) (see ref. 10 for data), and demonstrate that the deprotonation of our quaternary salts follows neither function.

For these reasons, the $\mathrm{p} K_{\mathrm{a}}$ values for the N-Me derivatives of (1c), (1d), (5 d), and (9 d) were measured relative to that of the $N-M e$ analogue of (11d), which had been measured in water, by a Hammett stepwise procedure. Results from the ionisation measurements on 1-methyl-2pyridone phenylmethide and diphenylmethide ${ }^{51}$ were included to improve the overlap. The measurements on

Acidity functions in aqueous $\mathrm{Me}_{2} \mathrm{SO}$ containing tetramethylammonium hydroxide (0.047 M): (A), nitrogen acid scale ${ }^{54, *}$; (B), carbon acid scale; (C), $H_{0(q)}$ scale (present investigation)

1-methyl-2-pyridone methide performed earlier ${ }^{1}$ at a wavelength of 380 nm were repeated at a new wavelength (295 nm) because work currently in progress on the pseudobase formation of the pyridinium ion indicated that this effect had been interfering with the earlier measurements. The new data, when included in the stepwise procedure, lead to a value of $19 \cdot 25 \pm 0.04$ for the $\mathrm{p} K_{\mathrm{a}}$ which modifies our earlier value of $20 \cdot 0 \pm 0 \cdot 2 .{ }^{1}$ From the present study it is possible to set up a new scale for this class of compound (neutral bases derived from quaternary salts), which we term the $H_{-(q)}$ scale, and this is illustrated in the Figure together with the carbon acid ${ }^{52}$ and nitrogen acid ${ }^{53,54}$ H_{-}scales for comparison.

The $H_{0 \text { (q) }}$ function rises more steeply with increasing $\mathrm{mol} \% \mathrm{Me}_{2} \mathrm{SO}$ than either the N -acid or the C -acid H_{-} functions in the region so far studied $(0.0-50 \cdot 4 \mathrm{~mol} \%$ $\mathrm{Me}_{2} \mathrm{SO} ; \quad H_{-}=12 \cdot 7-21 \cdot 0$). This probably reflects an

* The N-acid scale was originally for 0.011 m base. ${ }^{54}$ To correct to 0.047 m base the plot has been moved up by $0.7 H_{-}$ units. ${ }^{52}$
${ }^{51}$ S. O. Chua, personal communication.
${ }_{52}$ A. F. Cockerill and J. E. Lamper, J. Chem. Soc. (B), 1971, 503.
${ }^{53}$ R. Stewart and J. P. O'Donnell, Canad. J. Chem., 1964, 42, 1681, 1694.
increase in the solvation of BH^{+}by the increase in the proportion of $\mathrm{Me}_{2} \mathrm{SO}$, combined with the decrease in solvation by H bonding of B via the nitrogen lone pairs.
$\mathrm{p} K_{\mathrm{a}}$ Measurements for Weakly Basic Compounds.-The $\mathrm{p} K_{\mathrm{a}}$ values of the thioamides, (13) and (16), were determined in sulphuric acid-water solutions. The plots of $\log I$ vs. H_{0} for (13) and (16) had gradients -1.45 and -0.90 and intercepts at $H_{0}-2 \cdot 30$ and $-2 \cdot 61$, respectively. Therefore, a Yates type ${ }^{55}$ correction was made for (13) but not for (16).
$\mathrm{p} K_{\mathrm{a}}$ Measurements for Compounds Susceptible to Rapid Hydrolysis.-The $\mathrm{p} K_{\mathrm{a}}$ of 1-methyl-1,4-dihydroquinoline (14) was obtained by a stop-flow ${ }^{48}$ method in phosphatealkali buffers because it was rapidly hydrolysed by aqueous media. The required quantity $(0.2 \mathrm{ml})$ of a stock solution of the dihydroquinoline in absolute ethanol (which decomposed only slowly) was transferred to a dry u.v. cell (4 cm). The buffer (10 ml) was syringed into this sample cell in a Beckman DB spectrophotometer fitted with a Beckman ' 10 inch ' recorder and absorbance at 303 nm vs. time was plotted automatically. This procedure gives reproducible absorbance values after 5 s ; absorbance at the time of mixing and hence the $\mathrm{p} K_{\mathrm{a}}$ were obtained by extrapolation.

The stop-flow method was inapplicable to the $\mathrm{p} K_{\mathrm{a}}$ of cyclohexanone anil (15); benzylidene anils are hydrolysed with half lives of milliseconds in the region of their $\mathrm{p} K_{\mathrm{a}}$ values. ${ }^{56}$ For cyclohexanone anil Hall's method, ${ }^{15,49}$ was therefore adopted: potentiometric titration of the base ($5 \times 10^{-4} \mathrm{~mol}$) in methyl cyanide (50 ml) with perchloric acid in dioxan (0.5 m) was carried out. The e.m.f. at half protonation ($E_{\frac{1}{2}}$) was plotted against the $\mathrm{p} K_{\mathrm{a}}$ in water for 2,6-lutidine, pyridine, aniline, and m-nitroaniline and a straight line was obtained ${ }^{57}$ (cf. Hall's results ${ }^{49}$ and ref. 15

Table 6
Thioamide tautomerism

a Figures in parentheses refer to the corresponding amideimidate equilibria. ${ }^{b} \mathrm{MeCSNH}_{2}$, see D. Rosenthal and T. I. Taylor, J. Amer. Chem. Soc., 1957, 79, 2684. ${ }^{\text {c MeCSNHPh, }}$ present investigation. ${ }^{\text {a }}$ PhCSNHMe, present investigation. e $\mathrm{MeC}(\mathrm{SEt}) \mathrm{NH}$, see ref. 24. ${ }^{f} \operatorname{PrC}(\mathrm{SEt}) \mathrm{NPh}$, see ref. 24. ${ }^{2} \mathrm{PhC}(\mathrm{SEt})=\mathrm{NH}$, see ref. 24. ${ }^{\boldsymbol{n}}$ Obtained from data in Table 1 of ref. I. ${ }^{i}$ See Table 3. ${ }^{\prime}$ See Table 4.
for a wide range of bases). Using this correlation, the $\mathrm{p} K_{\mathrm{a}}$ of (15) was obtained from the value of its $E_{\frac{1}{2}}$. The protonation of cyclohexanone anil was shown to be reversible

[^3]under these conditions by recording its u.v. spectrum in methyl cyanide alone ($4.2 \times 10^{-4} \mathrm{~m}$), again after adding the perchloric acid ($0 \cdot 2 \mathrm{ml}$)-dioxan (3 ml), and once more after neutralising the acid with triethylamine $(0 \cdot 1 \mathrm{ml})$.

APPENDIX

Thioamide-Thioimidate Tautomerism.-U.v. ${ }^{47}$ and i.r. ${ }^{58}$ spectroscopic studies demonstrate that potentially tautomeric thioamides exist essentially as such rather than as the SH tautomer, but there appear to be no quantitative estimates of the equilibrium constants, K_{T}, for this fundamental equilibrium. K_{T} Can be estimated from $\mathrm{p} K_{\mathrm{a}}$ data
${ }^{58}$ W. Walter, H. P. Kubersky, and D. Ahlquist, Annalen, 1970, 733, 170.
of fixed models or the $\mathrm{p} K_{\mathrm{a}}$ of the mobile form and one fixed model, particularly when the model is one for the least favoured tautomer. ${ }^{59} \quad \mathrm{p} K_{\mathrm{a}}$ Data from the literature and the present work, together with values of K_{T} derived from these, are reported in Table 6. The results show that a phenyl substituent on nitrogen reduces the predominance of the thioamide form by a factor of $c a .10$. Comparison of the data for tautomeric thioamides with those for corresponding tautomeric amides (Table 6) shows that the R'CXNHR tautomer is more favoured in the former series.
[2/2576 Received, 14th November, 1972]

[^4]
[^0]: ${ }^{5}$ C. L. Bell, R. S. Egan, and L. Bauer, J. Heterocyclic Chem., 1965, 2, 420.
 ${ }^{6}$ W, Weiffert and H. H. Mantsch, Tetrahedron, 1969, 25, 4569.
 ${ }^{7}$ V. P. Zvolinskii, M. E. Perel'son, and Yu. N. Sheinker, Teor. i eksp. Khim., 1970, 6, 250.
 ${ }^{8}$ See also J. Kuthan and M. Ichová, Coll. Czech. Chem. Comm., 1971, 36, 1413; V. P. Zvolinskii, M. E. Perel'son, and Yu. N. Sheinker, Teor. i eksp. Khim., 1969, 5, 160; L. Paoloni, M. L. Tosato, and M. Cignitti, Theor. chim. Acta, 1969, 14, 221 .
 ${ }^{9}$ C. F. Reynold, Ph.D. Thesis, Exeter University, 1963, as quoted in K. Schofield, 'Heteroaromatic Nitrogen Compounds,' London, Butterworths, 1967, p. 325.

[^1]: * It is fundamental to this treatment that amides undergo protonation at oxygen. Further evidence has been provided recently (A. R. Fersht, J. Amer. Chem. Soc., 1971, 93, 3504).
 \dagger For further justification that ΔG° is a good estimate for $\Delta H_{\text {int }}$ see P. D. Bolton and L. G. Hepler, Quart. Rev., 1971, 25, 521.
 $\ddagger A_{\mathrm{py}}-A_{\mathrm{x}}$ is the difference in aromatic resonance energy between the pyridine and pyridonoid structures: X refers to the exocyclic atom or group in the latter series (see ref. 1). Similar nomenclature follows for the benzo-fused series.
 ${ }^{16}$ A. Pietryzk, R. Wiley, and D. McDaniel, J. Org. Chem., 1957, 22, 83.
 ${ }_{18}$ S. F. Mason, J. Chem. Soc., 1958, 674.
 18 A. Albert and G. B. Barlin, J. Chem. Soc., 1959, 2384.

[^2]: ${ }^{35}$ Ref. 34, vol. I, p. 211.
 ${ }^{36}$ J. G. Cannon and G. L. Webster, J. Amer. Pharm. Assoc. Sci. Ed., 1958, 47, 353 (Chem. Abs., 1958, 52, 172,731).
 ${ }_{37}$ Y. Ban, O. Yonemitsu, and M. Terashima, Chem. and Pharm. Bull. (Japan), 1960, 8, 194.
 ${ }^{38}$ R. S. Barrows and H. G. Lindwall, J. Amer. Chem. Soc., 1942, 64, 2430.
 ${ }^{39}$ E. A. Steck and G. W. Ewing, J. Amer. Chem. Soc., 1948, 70, 3397.
 ${ }_{40}$ R. N. Shreve, E. H. Riechers, H. Rubenkoenig, and A. H. Goodman, Ind. and Eng. Chem., 1940, 32, 173 (Chem. Abs., 1940,
 34, 1988^{2}).
 ${ }_{41}$ W. M. Whaley and W. H. Hartung, J. Org. Chem., 1949, 14, 650.

 42 A. Pictet and A. Gams, Ber., 1910, 43, 2389.

[^3]: ${ }^{54}$ D. Dolman and R. Stewart, Canad. J. Chem., 1967, 45, 911.
 55 K. Yates and R. A. McClelland, J. Amer. Chem. Soc., 1967, 89, 2686.
 ${ }_{56}$ R. L. Reeves and W. F. Smith, J. Amer. Chem. Soc., 1963, 85, 724.
 ${ }^{57}$ For full details see R. D. Tack, Ph.D. Thesis, Norwich, 1972

[^4]: ${ }^{59}$ A. R. Katritzky and J. M. Lagowski, Adv. Heterocyclic Chem., 1963, 1, 325.

